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Chapter 3

Bias in a Spatial Auditory

Attention Task

Cognitive architectures provide a framework for developing models of users inter-

acting with everything from mobile phones [38] to interactive tutors [30]. However,

much of the research has been focused on modeling aspects of human cognition asso-

ciated with using traditional computer interfaces. This includes identifying items on

a screen using models of visual attention and perception or modeling the motor skills

required for mouse and key presses. Much less work has been done to integrate other

cognitive functions, such as spatial auditory attention, which affects how quickly and

accurately we attend to the sounds around us. There are many situations where it is

useful to simulate auditory attention. For example, hospital emergency rooms make

use of auditory alarms to convey important information, and it is helpful to under-

stand when these alarms will be heard, and when they will go ignored. Behavioral

experiments have shown that response times to spatial sounds are dependent on the

spatial location of the sound [39]. This attentional bias can be modeled as a combina-

tion of top-down, or goal-driven processes and bottom-up, or salient, processes. The

following chapter describes a new approach for modeling spatial auditory attention
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using the AI framework of constraint satisfaction problems and shows how it can be

incorporated into the ACT-R cognitive architecture [18]. The work presented in this

chapter was originally published in the Postproceedings of the 9th Annual Interna-

tional Conference on Biologically Inspired Cognitive Architectures [18], and presented

at the 2017 Workshop on Cognition and AI for Human-Centred Design [40] and the

4th International Workshop on Artificial Intelligence and Cognition [41]. 1

3.1 Introduction

Visual attention has attracted a substantial amount of interest from the research

community [42, 43, 44], but less work has been devoted to modeling spatial auditory

attention [45]. Audition is unique from other senses in that it monitors the environ-

ment for sounds happening all around us. The auditory system is particularly useful

as an early warning system that can orient attention to things far away and out of

sight. This makes it ideal for conveying information about everything from fire alarms

to text message notifications. However, this often requires finding a balance between

attending to potential threats or opportunities and focusing on a current task.

Computational methods are used to study many aspects of human cognition and

behavior, including attention [46, 47, 27]. The goal of this chapter is to better under-

stand spatial auditory attention, particularly examining the attentional processes that

govern shifting attention to infrequent distractors. We examine two computational

approaches to modeling auditory attention. First, we present a novel method that

uses constraint satisfaction problems to model attentional bias as a spatial gradient

that results from balancing attention between current goals and important events in

the environment. Next, we show how a drift diffusion model captures the ways in

which attention develops over time and how this relates to the biases that are modeled

in the constraint model.

1 Code relating to this project can be found at: https://github.com/jaelle/cmsaa
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We foresee that this work will advance understanding of basic issues in attention,

such as top-down and bottom-up interactions, vigilance, and capacity limitations.

Moving beyond the study of spatial auditory attention in isolation, we incorporate it

into the cognitive architecture, ACT-R. We substantially extend ACT-R’s ability to

model auditory attention to include support for spatial auditory attention tasks. This

allows us to examine the computational models of spatial auditory attention in the

context of the mind as a whole. In our new and sophisticated ACT-R audio module,

we create a cognitive agent that simulates human behavior in a spatial auditory

attention task, enabling realistic predictions on how fast humans react to sounds.

This work opens up new possibilities in designing and optimizing systems for humans

where audition is important. For example, there are safety issues when pilots miss

critical alarms [48], or when clinicians are unable to distinguish between auditory

alarms in a hospital environment [49]. By examining spatial auditory attention in

these contexts, it may be possible to predict when such warnings might be ignored.

In Section 3.2, we review the literature related to spatial auditory attention, and

cover the fundamentals underlying the computational methods we developed, includ-

ing constraints, drift diffusion methods, and cognitive architectures. The experiment

is described in Section 3.3.1 and the model design is described in Section 3.4. Section

3.5 present the process of fitting the constraint model and drift diffusion model to

the behavioral data we collected, as well as a discussion of the results. Section 3.7

describes the development of an extension to the ACT-R audio module and demon-

strates how the extension enables ACT-R to accurately simulate human behavior in

the spatial auditory attention task.
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3.2 Background

We start by providing a brief background on psychology literature related to spatial

attention and its computational models. We also give some fundamental information

concerning the computational methods we adopt to model spatial auditory attention.

3.2.1 Spatial Attention

Differentiating Top-down and Bottom-up Attention

Almost all attention models distinguish attention that is directed by personal choice

from attention that is directed to an event by virtue of it having a salient property,

such as a loud sound [50]. This dichotomy is intuitive and has many names in the

literature (e.g. top-down/bottom-up, endogenous/exogenous, controlled/automatic

[51]. In this chapter, we use the terms ”top-down” and ”bottom-up”. Top-down

control regulates information flow based on the current situation and goals in short-

term memory by generating a task set to bias processing towards information useful

for goal attainment. Bottom-up refers to attention capture that is not guided by

current top-down goals (i.e., sounds in the environment that are not actively being

listened to). Although the top-down and bottom-up distinction is meaningful, as a

practical matter, they are highly interactive [52]. The difficulty of cleanly separating

the two processes motivates us to use a computational model, which can examine

top-down and bottom-up functions in isolation.

Gradients of Attention

Past work has considered both auditory spatial attention and visual attention at a

cognitive level of analysis. Mangun and Hillyard [42] shows that attention can be

expressed as a spatial gradient relative to an attended location. Gradients are pre-

sumably a byproduct of limited perceptual input capacity, although limitations in
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behavioral output may also be relevant [43]. The spatial range of attentional pro-

cessing is variable [53], and can be modified by directly cuing different size areas [44],

or manipulating perceptual or memory loads [54]. Several examples in the literature

have shown that auditory spatial cuing decreases reaction times to subsequent targets

at a cued location relative to uncued locations [55, 45, 56]. Both Robert J. Zatorre

et al. [45] and Rorden and Driver [56] found that target reaction times increased

monotonically with greater distance between the cued and target locations. Visual

studies suggest that gradients may have a more complex shape (”Mexican-hat”), with

reaction times increasing and then decreasing when responding to sounds further from

it [57, 58]. Our results show a similar ”Mexican-hat” shape in an auditory attention

task, but with a much larger spatial range.

Figure 3.1: Example of attentional gradients proposed in the literature. Some literature has shown
that response times at attended locations are faster than those further from the attended location
[54]. Other literature has shown evidence for a more complex ”Mexican Hat” shape, where response
times increase at uncued locations near the attended location and then decrease the further the
location is from the attended location [57]

3.2.2 Computational Models of Cognition

Computational models of cognitive processes are beneficial because they require an

explicit theory, can reveal hidden assumptions or logical inconsistencies, and simula-

tions can establish proof-of-principle much faster than pilot experiments [6]. Using a
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constraint model, we are able to rapidly test ideas of top-down and bottom-up atten-

tional control from prominent verbal models [59], showing how the observed behavior

can emerge from top-down and bottom-up interactions. We also use a drift diffusion

model of the behavioral task to show how attentional processes that develop over

time.

Constraints and Cognitive Models

Constraint programming [16] is a powerful paradigm for modeling and solving com-

binatorial search problems currently applied with success to many domains, such as

scheduling, planning, vehicle routing, configuration, networks, and bioinformatics.

The basic idea in constraint programming is that the user states the constraints, and

a general-purpose constraint solver is used to solve them. Constraint solvers take a

real-world problem, represented in terms of decision variables and constraints, and

find an assignment to all the variables that satisfy the constraints. Constraints con-

cern subsets of variables and define which simultaneous assignments to those variables

are allowed. For example, in our auditory task, the variables represent the spatial

range of possible cue locations, while the constraints limit the amount of attentional

bias allocated by top-down and bottom-up attention at each location.

Solutions are found by searching the solution space either systematically, as with

backtracking algorithms, or use forms of local search which may be incomplete, that

is, there is no guarantee they will return a solution. Systematic methods often inter-

leave search and inference, where inference consists of propagating the information

contained in one constraint to other constraints via shared variables. The rich variety

of finely-tuned algorithms available for constraint problems has made the effort of

translating real-world problems into this framework an efficient solving approach.

Constraints have been used before in the context of human cognition to model

skilled behavior [10] and learning [11]. An implementation of ACT-R based on con-
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straint handling rules, which are closely related to constraints, has been proposed in

[60].

In Section 3.4.1, we show how we used this well-established framework to rapidly

test various hypotheses about how top-down and bottom-up attention combine to

generate observed behavior.

Drift Diffusion Models

To supplement the constraint model of overall attentional bias, we used a diffusion

model to explore how cognitive processes develop over time and result in either suc-

cessful perception, or making an error. The drift diffusion model is used to model

the accumulation of information in two-choice tasks as a speed and accuracy trade-

off [17]. By comparing the results of our drift diffusion model, with those of our

constraint model, we are able to show that the drift rate parameter and boundary

separation are predictive of the attentional bias predicted by the constraint model.

We also explore how the drift diffusion model can be incorporated into the ACT-R

audio module to model individual differences in our behavioral task.

Visual and Auditory Attention in ACT-R

Cognitive architectures, such as ACT-R (described in Section 2.1, provide a frame-

work for modelers to test computational models of cognition and to simulate human

behavior. In this chapter, we use a constraint model and a drift diffusion model to in-

form the design of an extension to the ACT-R audio module for modeling attentional

bias for spatial sounds. ACT-R has built-in modules for visual and auditory attention,

which it communicates with through buffers [12]. For example, in the Visual module,

a visual buffer contains all of the objects in the visual scene, and a visual-location

buffer contains the location (as x and y coordinates) of the object that is currently

being attended to. Although ACT-R has been used to test theories and simulate
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tasks involving visual attention, auditory attention has received less consideration.

ACT-R provides a basic audio module that assumes a constant amount of time to

respond to sounds and provides no representation for spatial sounds. We extend this

functionality to provide support for spatial sounds and the range of reaction times

observed in a behavioral task.

3.3 Behavioral Experiments

We start by describing two behavioral tasks we designed to map out the attentional

gradients.

Figure 3.2: Experimental design for left (-90◦) and right (+90◦) conditions. Stimuli were presented
from a standard attended location (-90◦, 0◦or 90◦) or a shift location that was not currently being
attended to (represented by the black circles). Subjects differentiated between stimuli with differing
amplitudes (25 Hz vs 75 Hz).

3.3.1 Sustained Attention Task

In the first task, white noise was presented from five locations in the frontal plane

(−90◦, −45◦, 0◦, +45◦, +90◦), and subjects (N=92) respond in each trial by dis-

criminating the amplitude modulation (AM) rate, (25 Hz or 75 Hz). The slow AM

rate sounds like a deck of cards being shuffled while the faster rate is perceived as

a buzz. Subjects completed 6-minutes blocks with 150 trials coming from all five

locations. In each block they attended to a standard location that was -90◦, 0◦, or
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+90◦(counterbalanced). Most stimuli came from a standard location, with probabil-

ity 0.84, but sometimes shift to one of the remaining four distractor locations, with

a probability of 0.04 per location.
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Figure 3.3: Median and standard deviation of reaction times in the spatial auditory attention task.

Figure 3.4: The relationship between reaction time and attentional bias. Attentional bias is on a
normalized scale between 0 and 1. Faster reaction times mean higher attentional bias (shown in
red), while slower reaction times mean bias values closer to 0 (shown in blue).

Figure 3.3 plots median reaction times and location for each standard condition.

First, all conditions had slower responses to distractors vs. standards (p < .001),
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indicating attention shift costs. This effect was more prominent the left (−90◦) vs. the

right (90◦) standard (p < .01), suggesting that it is faster to shift auditory attention

from right-to-left than from left-to-right. The 0◦standard has an increase at near ±45◦

locations, similar to the left standard, but a decrease for the ±90◦ locations, similar

to the right standard (p < .001). In each condition, reaction times sped-up for the

distractor locations furthest from the standard (p < .001) (for example, −90◦ is the

furthest distractor location from 90◦. This was seen in each subject’s first block, so is

not due to carry-over effects from previous standard locations. The faster responses

at far distractors cannot be accounted for by a graded reduction in bias from the

attended location. Instead, we hypothesize that bias contributed by a saliency map

leads to the heightened bias to far distractors (see Section 3.4.1). Figure 3.4 shows

how we theorize attentional bias to relate to reaction time.

3.3.2 Vigilance Task

Subjects are generally very accurate in performing the spatial attention task, and four

of the five locations that are tested have relatively few trials (n=12 trials for each shift

location). This is problematic for modeling with the drift diffusion model (described

in Section 3.4.2), which requires examples of both correct and incorrect trials for the

analysis. To address this, we used data from an experiment that was similar to the

spatial auditory attention task [61]. In this task, subjects were given 1,908 trials

in one block lasting 38 min 10 seconds. Of these trials, 1,800 trials were the same

as in the sustained attention task when the standard location was at 0 (mid-line).

There were 1,512 stimuli presented from the standard location, and for the infrequent

shifts (p = .04/location) 72 trials were given at each of the four locations flanking the

mid-line (45, 90). This vigilance data set yielded six-times more trials than in the

sustained attention task described in section 3.3.1. Figure 3.5 plots median reaction

times and location for the vigilance task each standard condition.
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Figure 3.5: Median and standard deviation of reaction times for correct and error responses in the
vigilance task.

3.4 Models of Spatial Auditory Attention

We examine two computational approaches to model spatial auditory attention. The

first uses the constraint satisfaction framework to model how spatial auditory atten-

tion emerges from top-down and bottom-up interactions. The second uses the drift

diffusion model to examine information accumulation in the behavioral task, showing

how this leads to a sound being accurately perceived, or an error.

3.4.1 Constraint Model

Here we describe a constraint-based approach to modeling the cognitive mechanisms

leading to attentional bias. We first describe the high-level details of how our model

relates to spatial auditory attention and then present a formal description of the

constraint model.

Figure 3.6 depicts the overall hypothesis on the interplay between top-down and
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bottom-up spatial attention processing. There are three main components: a goal

map that represents top-down attention, a saliency map that represents bottom-

up attention, and a priority map that represents the combination of top-down and

bottom-up attention. The given inputs to the model are (1) attended location and

the (2) sound location. The output is a priority map representation of attentional

bias across the 180◦ semicircle horizontal frontal plane (from −90◦ on the far left

to 90◦ on the far right). Areas of greater attentional bias are assumed to relate to

measurable data by having faster reaction times, more sensitive sensory thresholds,

and increased accuracy relative to locations with less bias.

We emphasize that this is a model of information processing at the cognitive

level. It is designed to help interpret behavioral results and inspire new experiments

to test and refine the model. It is not intended to model how neural activity relates to

attention. The gray boxes show inputs and outputs that interface with other cognitive

functions.

We adopt a constraint-based representation that is very flexible in terms of mod-

eling different hypotheses on the attentional bias distributions and on the interaction

of the maps. Figure 3.7 depicts a high-level representation of the constraint graph of

our model. Using this method, we were able to rapidly test combinations consisting

of different goal map shapes and saliency map shapes. The goal map could be a

Gaussian, consistent with a classic ”attentional spotlight” or ”zoom” lens gradient

[62, 63], or a Gaussian flanked at the edges by inhibition commonly seen in visual

attention studies [64], and supported by modeling and neurophysiological measures

[65, 66, 67]. The saliency map could be either a constant bias at each location or a

Gaussian spatially tuned to be opposite the goal map, with the highest attentional

bias at the edges of the attended range.

We cast the interactions among the three maps into a constraint solving problem

that can be efficiently solved with the rich algorithmic machinery which has been
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Figure 3.6: Constraint-based Computational Model Schematic.

developed for constraints[16]. A constraint satisfaction problem is defined as a triple

〈X,D,C〉 where X is a set of variables, {x1, ..., xn}; D is a set of domains, {D1, ..., Dn}

associated with x1, ..., xn respectively; and C is a set of constraints. In the notation

below, a constraint c ∈ C is a pair c = 〈σ, ρ〉 where σ is a list of variables and ρ is

a list of functions defining the simultaneous variable assignments that are allowed by

the constraint for the variable in σ.

In our constraint satisfaction problem we define variables in X, and domains in

D are defined each with their own domain in D:

• L represents the attended location, with the domain being locations (in 1◦

increments) in the semicircle {−90◦,−89◦, ..., 89◦, 90◦}

• VG = {V i
G, ..., V

n
G}, where i = {−90,−89, ..., 89, 90}. VG represents the goal map

in the horizontal frontal plane (from -90◦on the left to 90◦on the right). The

domain of the variable V i
G ∈ VG is the interval [0, 1] to represent attentional bias

contributed by the goal map.

• VS = {V i
S, ..., V

n
S }, where i = {−90,−89, ..., 89, 90}. VS represents the saliency

map in the horizontal frontal plane. The domain of each variable V i
S ∈ VS is

the interval [0, 1] to represent attentional bias contributed by the saliency map.
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• VP = {V i
P , ..., V

n
P }, where i = {−90,−89, ..., 89, 90} represents the priority map

in the horizontal frontal plane. The domain of the variable V i
P ∈ VP is also [0, 1]

to represent the total attentional bias in the priority map.
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Saliency Map Variables

Priority Map Variables
Constraints

Attended
Location

-90°    -45°    0°    45°    90

-90°    -45°    0°    45°    90

-90°    -45°    0°    45°    90

A
tte

nt
io

na
l B

ia
s

A
tte

nt
io

na
l B

ia
s

A
tte

nt
io

na
l B

ia
s

Figure 3.7: Variables and constraints representing the three maps and their interconnections. For
clarity, only the constraints relative to the variables corresponding to the [-90◦, -89◦] location are
shown.

Now we formally define the constraints that represent several different hypotheses

about the shape of the goal map and saliency map and how they combine to produce

attentional bias in the priority map. We denote variables in the goal map as V i
G, the

variables in the saliency map as V i
S, and variables the priority map as V i

P , where the

i represents a 1◦ location in the azimuth plane.

Goal Map: Gaussian Model. This goal map represents a top-down, voluntary

focus of attention to a location that has a progressive, symmetrical decrease in atten-

tional bias away from an attended location. Given that location L = l is (voluntarily)

attended, this is represented as a standard Gaussian distribution using the following

set of constraints over variables L and V i
G. The following indicates the tuple of values
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Figure 3.8: Hypothesized shapes for the goal map and saliency map.

which are allowed by the constraint.

〈(L, V i
G), (L = l, V i

G = GGe
−(l−i)2

2d2
G )〉 (3.1)

where dG is the standard deviation of the goal map and GG is the height of its peak

(pictured in Figure 3.8).

Goal Map: Gaussian Model with Inhibition. This goal map represents a

large amount of attentional bias at the goal location. But, rather than a systematic

decrease in bias, this model examines the idea that attention is inhibited at the edge

of the spatial range, leading to a ”Mexican hat” shape (depicted as the Inhibited Goal

Map in the bottom-left of Figure 3.8).

〈(L, V i
G), (L = l, V i

G = GGe
−|l−i|2

2d2
G1 + (GG −GGe

−|l−i|2

2d2
G2 ))〉 (3.2)

Notice that this is obtained through the sum of a Gaussian and an inverted Gaus-

sian. GG is the maximum of the two functions, and there are two standard deviations

for the components, represented by dG1 and dG2 . Using this approach, we obtain the
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desired shape, which has a peak at the attended location, which dips down to an area

of lower attentional bias and then increases and stabilizes as we move far away from

the attended location.

Similarly, we consider two models of the saliency map, which models bottom-up

attention, allocating attention to a stimulus based on how salient it is. As in the

goal map, this involves defining constraints between variable L and the variables

representing attentional bias at each location in the saliency map.

Saliency Map: Inverted Gaussian Model. In this model, bottom-up atten-

tion is reciprocally tuned away from the goal map, with less bottom-up attention

being allocated at the attended location and more at locations further from it (pic-

tured as Inverted Gaussian Saliency Map in the top-right of Figure 3.8). This can be

represented as an inverted Gaussian distribution, represented by:

〈(L, V i
S), (L = l, V i

S = GS −GSe
−|l−i|2

2d2
S )〉 (3.3)

where dS is the standard deviation for the saliency map, and GS is its maximum

value.

Saliency Map: Constant Bias Model. We also tested the possibility that

the saliency map is a constant level k of bias across all spatial locations (pictured in

Figure 3.8). This is represented as:

〈(L, V i
S), (L = l, V i

S = k)〉 (3.4)

where k is a constant value.

Priority Map. Lastly, the priority map is defined as the sum of the contributions

of the goal and saliency map.

〈(V i
G, V

i
S, V

i
P ), (V i

G = u, V i
S = v, V i

P = u+ v)〉 (3.5)
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Using the models for the goal and saliency maps described above, we tested com-

binations that represent three different hypotheses about attentional bias in spatial

auditory attention. These included: (1) Simple Gaussian Model: Gaussian goal map

and constant saliency map, (2) Inhibited Goal Map Model: Gaussian goal map with

edge inhibition and constant saliency map, and (3) Reciprocal Model: Gaussian goal

map and a Gaussian saliency map tuned to opposite the goal map. Both (2) and (3)

test whether attention gradients need to be more complex than a simple Gaussian,

to account for our data.

3.4.2 Drift Diffusion Model

We applied the drift diffusion model to examine how information accumulates over

time in the spatial auditory attention task. The drift diffusion model is commonly

used to model the subject’s information accumulation processes in two-choice re-

sponse tasks, explaining performance differences by considering the speed and accu-

racy trade-off [17].

The model includes several components. First, the evidence is accumulated to-

wards either choice in a noisy, stochastic way, with the average rate of the accumu-

lation set to the drift rate (λ). Each choice is specified at a boundary (a), which

specifies the threshold of information that must be accumulated towards one choice

or another to make a decision. A parameter, z, represents the starting point where

information begins to accumulate. The non-decision time (Ter) represents early per-

ceptual encoding before the decision processes and the time to complete the action

once a decision has been made.

There are a variety of computational methods for fitting the drift diffusion model

to behavioral data [9]. These methods generally require estimating the parameters

that best fit the reaction time distribution of both the accurate responses and errors.

This requires a full reaction time distribution as input (including error responses).
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However, in many behavioral tasks (including the ones described in Sections 3.3.1

and 3.3.2), the data contains few errors, particularly for responses at each of the

infrequent shift locations. A small error reaction time distribution can result in

inaccurate parameter estimations by the drift diffusion model.

To address this limitation, we used the EZ-Diffusion model to estimate the pa-

rameter values. The EZ-Diffusion model, which is derived from the Ratcliff drift

diffusion model, is an alternative for sparse datasets [68]. Rather than requiring the

full reaction time distribution, the EZ-Diffusion model only requires the mean (m)

and variance (v) of response times and response accuracy (Pc) as inputs. The EZ-

Diffusion model assumes that z = a/2 and translates the drift rate (λ), the boundary

(a), and the non-decision time (Ter) from the inputs, using the following equations.

First, the probability that the stochastic process reaches the correct boundary,

leading to a correct response, Pc, is:

Pc =
1

1 + e−av
(3.6)

Second, the variance (vrt) of a symmetrical diffusion process [69] is calculated as:

vrt = (
a

2v3
)
2yey − e2y + 1

(ey + 1)2
, (3.7)

where y = −va and v 6= 0. If v = 0, then:

vrt = a4 (3.8)

Finally, the mean reaction time is made up of two components, the mean decision

time (mdt) and the non-decision time (Ter) [68]:

mrt = mdt + Ter (3.9)
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Here, the mean decision time can be determined by the equation:

mdt = (
a

2v
)
1− ey

1 + ey
. (3.10)

Given the above equations, we can determine the values of a, Ter, and λ:

λ =
|Pc − 1

2
|

Pc − 1
2

(
log Pc

1−Pc
(Pc

2 log Pc

1−Pc
− Pc log Pc

1−Pc
+ Pc − 1

2

vrt

) 1
4

(3.11)

a =
log Pc

(1−Pc)

λ
(3.12)

Ter = mrt −mdt (3.13)

Using the the mean reaction time, variance and accuracy of the each subject’s

responses to the task described in Section 3.3.2, we used the above equations to

calculate the parameter values a, λ and Ter (see Section 3.5.2).

3.5 Methods

In the following, we describe the methods utilized for analyzing the constraint model

and drift diffusion model.

3.5.1 Constraint Model

By comparing the output of the constraint model to that of behavior in the spatial

auditory attention task (described in Section 3.3.1), we can see how it explains the

interplay of top-down and bottom-up behavior. To validate this model, we employed

non-linear least-squares analysis (as implemented in the Python scipy.optimize li-

brary) to find the parameter values for dS, dG, GS, and GG that led to an optimized
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fit when comparing the priority map to the data. Bootstrapping methods were used to

compare model fit to 100 subsets of the data (without replacement), for each standard

location. This was used to assess the consistency of results and prevent overfitting.

For each bootstrapping run, half of the subjects (n=46) were randomly selected to

train the model. Once the model was trained, we calculated the fit of the parameters

using the root-mean-square error on the mean of the remaining subjects (n=46).

The parameter values representing the best fitting models are described in Section

3.6.1. These represent the best shapes for a goal and saliency map (representing

top-down and bottom-up attention) that combine to create observed behavior in

spatial auditory attention. Next, we consider how attention affects the information

accumulation process and how this leads to a sound being perceived, or an error.

3.5.2 Drift Diffusion Model

Analyzing the parameters extrapolated from the collected data in the vigilance task

allowed us to better understand how subjects accumulated information throughout

the task. First, we estimated the drift diffusion model from the group of 30 subjects

that performed the vigilance task described in Section 3.3.2. Subjects continuously

attended to the midline location for over 38 min, and the inter-stimulus interval was

faster (1.2 seconds between stimuli), which yielded six-times more trials than in the

sustained and divided attention conditions above. The reason for needing more data

is that estimating parameters for the diffusion model requires a dataset that contains

correct and incorrect trials for each level of analysis. Subjects are generally very

accurate in performing the spatial attention task, and four of the five locations that

are tested have relatively few trials in the first two groups of subjects (n=12 trials

for each shift location). Here subjects received 1,800 trials, with 72 trials for each of

the four shift locations. One participant did not have enough errors to compute the

diffusion parameters. Using the behavioral data for the remaining 29 subjects, we used
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the EZ-Diffusion Model to estimate the values of the drift rate, decision boundary,

and non-decision time. An analysis of the best fitting parameters is described in 3.6.2.

3.6 Results and Discussion

This following subsections discuss the results of analyzing spatial auditory attention

using the constraint model and drift diffusion model.

3.6.1 Constraint Model

We fit the three combinations of the goal maps and saliency maps to the reaction times

from our behavioral task when attending to the left, midline, and right locations,

using the approach described in Section 3.5.1. The results are shown in Figures 3.9,

3.10, and 3.11. Parameter and fit values for each model are summarized in Tables

3.1, 3.2, and 3.3. These models ranged in complexity from simple to more complex.

The simplest model (Simple Gaussian Model) featured a Gaussian goal map (see

Equation 3.1) and a constant value for the saliency map (see Equation 3.4). In the

second model (Inhibited Goal Map Model), the saliency map is also represented by a

constant value, and the goal map is represented as a Gaussian peak at the location

of top-down attention focus is surrounded by areas of attentional inhibition at the

distant locations (see Equation 3.2). Finally, the most complex model (Reciprocal

Model) featured opposing Gaussian functions for goal map and saliency map. Here,

the goal map peak is at the top-down attended location. The saliency map peak is

centered away from the goal map at the most distant location from the goal map

focus (see Equation 3.3). For example, when the goal map is centered on -90, the

attentional bias contributed by the saliency map peaks at +90.

The results show that among the three models being tested, a simple Gaussian

attention gradient that decreases with distance from the attended standard location
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Figure 3.9: Simple Gaussian Model: Gaussian Goal Map and Constant Saliency Map. Comparison of
the predicted and actual attentional bias as a function of attended standard and stimulus locations.
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Figure 3.10: Inhibited Goal Map Model: Inhibited Goal Map and Constant Saliency Map. Com-
parison of the predicted and actual attentional bias as a function of attended standard and stimulus
locations.

had the worst fit to the behavioral data in (Figure 3.9). Statistical comparisons of the

fit showed significantly worse fits relative to the Reciprocal Model (all 3 standards,

p < .001) and the Inhibited Goal Map Model (all 3 standards, p < .001). The results

of quantitative tests in the present task show that one of the most common metaphors

for the shape of spatial attention; that of a spotlight or zoom lens does not account

well for the present data.

We next considered the Inhibited Goal Map Model, which featured a more complex

goal map shape and a zone of inhibition at the edges of the gradient. This shape is

supported in some visual attention studies [64, 65]. In this approach, the saliency

map is still considered as a constant level of bias in all directions within the range of

tested sound locations. This model fits our behavioral data well, as seen in Figure

3.10.
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Figure 3.11: Reciprocal Model: Gaussian Goal Map and Inverted Gaussian Saliency Map. Com-
parison of the predicted and actual actual attentional bias as a function of attended standard and
stimulus locations.

The Reciprocal Model (pictured in Figure 3.11) was also a good fit for the be-

havioral data. Here the goal and saliency maps are both modeled using Gaussian

functions, with the saliency map being inverted so that it is tuned away from the

focus of attention for the goal map. Pairwise t-tests comparing the fit over 100 runs,

showed that the mean fits did not differ among any of the standard locations (p > .10).

Taken together, the above results show that a typical linear or Gaussian-shaped at-

tention gradient is insufficient to explain our reaction time results. The two models

that were viable either had a more complex gradient shape for the goal map (by

combining the Inhibited Goal Map with the Constant Saliency Map) or reciprocal

Gaussian shapes for both the goal and saliency maps.

Level SD
Standard Location Fit GM SM GM

-90◦(left) 0.0039 0.30 0.49 200.0
0◦(midline) 0.0018 0.30 0.48 200.0
90◦(right) 0.0051 0.30 0.50 200.0

Table 3.1: Simple Gaussian Model. Best fitting Goal Map (GM) and Saliency Map (SM) parameters
and resulting fits at each standard location. This model was comprised of a Gaussian shaped goal
map and constant value for the saliency map.
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Level SD
Standard Location Fit GM SM GM

-90◦(left) 0.0016 0.40, 0.42 0.36 59.2, 68.8
0◦(midline) 0.0006 0.38 ,0.45 0.40 50.0, 60.1
90◦(right) 0.0006 0.45, 0.44 0.32 51.6, 53.2

Table 3.2: Inhibited Goal Map Model. Best fitting Goal Map (GM) and Saliency Map (SM) param-
eters and the resulting fits at each standard location. The model was comprised of a goal map with
Gaussian peak at the focus of top-down attention that was flanked by areas of attentional inhibition
at the distant locations. The saliency map was represented as a constant value.

Level SD
Standard Location Fit GM SM GM SM

-90◦(left) 0.0026 0.74 0.76 62.7 67.8
0◦(midline) 0.0010 0.75 0.80 47.9 52.4
90◦(right) 0.0008 0.75 0.74 42.0 45.0

Table 3.3: Reciprocal Model. Best fitting Goal Map (GM) and Saliency Map (SM) parameters
and resulting fits at each standard location. In this model, the goal map peak is at the top-down
attended location. The saliency map peak is centered away from the goal map at the most distant
location from the goal map focus.

3.6.2 Drift Diffusion Model

Figure 3.12 plots the best fitting λ (drift rate), a (boundaries) and Ter (non-decision

time) as a function of stimulus location. Separate one-way ANOVA tests found sig-

nificant effects of location for drift rate (p < .001) and decision boundary (p < .01).

Comparisons of shift locations using 2 (side) x 2 (eccentricity) ANOVAs found a sig-

nificant effect of eccentricity for non-decision time (p < .02), with longer non-decision

times at the most lateral shift locations (±90◦ > ±45◦). There was a similar trend

towards faster drift rates for the most lateral shift locations (±90◦ > ±45◦, p = .053).

Thus, relative to the shift locations, information accumulated faster at the standard

location, decision thresholds for responding were higher, and non-decision processes

took less time. Parameters at shift locations in the left and right hemispaces were

comparable, and there were small differences in non-decision time, and perhaps drift

rate, between ±90◦ and ±45◦ locations.
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Figure 3.12: Parameters plotted against sound location. (A) drift rate λ, (B) boundary a and (C)
non-decision time Ter

From these results, we can observe how the interplay between drift rates, deci-

sion boundaries, and non-decision time can relate to the overall attentional bias and

accuracy. We see higher attentional bias and faster reaction times at the standard

location, as well as the lateral shift locations (±90). Since people were more accurate

at the standard location, we see more conservative decision thresholds, higher drift

rates and less non-decision time. In the ±45 and ±90 locations, the accuracy was

lower, leading to lower decision threshold boundaries. However, in the most lateral

shifts at (±90), the bias and reaction times were faster, resulting in slightly increased

drift rates and boundaries in the diffusion model. These results provide more insight

into how the rate of information accumulation (drift rate), which is thought to be en-

hanced by selective attention [67], relates to the placement of the decision boundaries.

The decision boundaries are the main mechanism for modeling speed-accuracy trade-

offs in diffusion models; liberal thresholds confer faster speed and lower accuracy,

while conservative boundaries slow responding but improve accuracy [17].

3.7 Extending the ACT-R Audio Module

ACT-R includes a basic audio module that allows cognitive agents to attend and

respond to simulated sounds. However, the existing module does not provide sup-
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port for spatial sounds or the varied reaction times we observed at different spatial

locations. This simplified view of auditory attention was not expressive enough to

represent the effect of attentional bias or the range of reaction times observed in our

behavioral data. In the following sections, I show how we used the constraint model

and drift diffusion model to expand this module to support spatial sounds.

To create an environment for testing our model of spatial auditory attention, we

extended the ACT-R audio module to model the attentional bias as a combination

of top-down and bottom-up processes. Top-down processes are represented as target

features (attended location l) stored in the ACT-Rs Imaginal buffer (see Section 2.1

for more information). Bottom-up processes are represented using features (sound

location i) of sounds stored in ACT-R’s Aural-Location buffer. Using these two

buffers, we generate a priority map that is generated using the Gaussian Goal Map

(Equation 3.1) and Inverted Gaussian Saliency Map (Equation 3.3), as described in

Section 3.4.1.

After the map of attentional bias is calculated, it must be converted into the

amount of time spent attending to a sound. A timeline of the components making up

the total response time is illustrated in Figure 3.13. ACT-R provides some built-in

timings for detecting a sound (50 ms), encoding a tone (50 ms), identifying an appro-

priate production rule that determines which key to press (50 ms), and pressing the

key (160 ms). The amount of attentional bias for a sound at location i is represented

by VP i . This value represents the inverse of the total reaction time, represented by

the equation 2000(1 − VP i). This provides a value representing the number of mil-

liseconds between 0 and 2000. Since 310 ms is already accounted for by other ACT-R

modules, we take the resulting reaction time and subtract 310. The resulting value

is used as the time in milliseconds that the model will spend attending to a detected

sound before choosing which key to press. Some sets of model parameters can result

in a priority map that generates an attentional bias of 0.845 or greater, which will
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extended Audio Module
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Figure 3.13: Amount of time (in ms) that each step contributes to the overall response time in
ACT-R’s simulated spatial auditory attention task.
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result in negative reaction times. In such a scenario, the model will substitute a value

of 0 ms. Thus, the possible reaction time required for the ACT-R model to complete

this task will be between 310 ms and 2000 ms. The equation for calculating the time

contributed by attending to a sound, given the attentional bias b at sound location i,

is represented below.

t(VP i) =

 2000(1− VP i)− 310 VP i < 0.845

0 VP i >= 0.845

3.7.1 Constraint Model Implementation in ACT-R

With this extended audio module, modelers can create an ACT-R agent that mimics

human subjects completing the spatial auditory attention task. To simulate the

behavioral task, the cognitive agent is instructed to attend to either the −90◦, 0◦

and 90◦ standard locations and then respond to sounds presented from the five sound

locations that the human subjects also responded to (at −90◦,−45◦,0◦,45◦, and 90◦).

The agent chooses a response action depending on the AM-rate of the sound (25 Hz or

75 Hz). This involves invoking the Motor module to simulate pressing the appropriate

key. The response time varies based on the amount of attentional bias at the sound

location.

An attended location can be modeled in ACT-R by storing the location (in de-

grees) in the Imaginal buffer, which is the buffer that ACT-R uses for storing task-

relevant information. Using this information and the sound location (stored in the

Aural-Location buffer), the agent chooses how to respond using the production rules.

For this task, four production rules are sufficient to govern the agent’s behavior.

These include:

1. If a location is in the Imaginal buffer, try to find a sound in the environment

and move it to the Aural-Location buffer.
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2. If a sound is detected in the Aural-Location buffer and a location is in the

Imaginal buffer, encode the sound and move it to the Aural buffer.

3. If the sound has an AM-rate of 25hz, then press ”d”.

4. If the sound has an AM-rate of 75hz, then press ”k”.

Given the attended location in the Imaginal buffer and the sound location from the

Aural-Location buffer, the Audio module calculates the attentional bias and converts

this to the appropriate response time in milliseconds as described above. The ACT-R

simulated data compared to the behavioral data can be seen in Figure 3.14.
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Figure 3.14: Comparison of the mean of 100 response times simulated in ACT-R and the mean
response times of the 92 subjects in the sustained attention task. We recall that the Reciprocal
Model, defined in Section 3.4.1, is used by ACT-R to generate these response times.

3.7.2 Modeling Individual Differences and Errors

Ideally, our ACT-R simulation should (1) generate a range of realistic reaction times,

and (2) simulate errors that are in line with observed behavior. By default, the ACT-

R audio module calculates an average reaction time and does not predict errors. We

addressed this in two ways, including the introduction of noise parameters to generate

reaction times in an exGaussian distribution and 2) by simulating response times and

errors using the drift diffusion model.

ExGaussian Distribution. As is often the case in many psychological exper-

iments that measure reaction time [70], the reaction time data collected in the ex-

periment described in Section 3.3.1 is right-tailed, appropriate for modeling as an



47

exGaussian distribution. ExGaussian distributions are the convolution of a normal

distribution (with a mean of µ and a standard deviation of σ) with an exponential

distribution (with a mean of τ), expressed as.

f(t) =
1

τ
exp{−(t− µ)

τ
+
σ2

τ 2
} ∗ φ{(t− µ)

σ
− σ

τ
}, (3.14)

where φ is a normal CDF.

We added parameters to the audio module that allow the modeler to set the value

of σ and τ . µ is automatically set to the value generated by the constraint model.

Using these three parameters, the module generates reaction times in an ex-Gaussian

distribution, allowing the modeler to simulate the range of reaction times observed

in an experimental task.

To generate a distribution of reaction times that were similar to those observed

in the behavioral experiment, we employed non-linear least squares analysis (as im-

plemented in the Python scipy.optimize library) to find the parameter values function

provided in the Python scipy library to find the the parameter sets [σs(a), τs(a), σd(a), τd(a)]

that best fit an exGaussian distribution to each individual subject’s reaction time at

each attended location, a. The parameters σs(a) and τs(a) represent the best fitting

values for σ and τ at the standard location, a. σd(a) and τd(a) represent the best

fitting parameter values at unattended locations (every location except a). This re-

sulted in a sample of 92 sets of parameters that represent the exGaussian distributions

of every subject at each attended location, [−90◦, 0◦, 90◦].

These parameters were used to modulate the exGaussian noise for each subject

simulated by ACT-R. To simulate the subjects in our behavioral task, we randomly

chose a set of parameter values (pi) from the 92 to use for each subject. The ACT-R

audio module calculates the amount of time required to attend to a sound, using

the method described in 3.7.1. The resulting time (in milliseconds) is used to fix

the value of µ in an exGaussian distribution for the current attended location l and
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the location of sound i. If the incoming sound is coming from the attended location

(l = i), then the values of σstandard and τstandard from pi are used to fix the remaining

σ and τ parameters in the exGaussian distribution. If the incoming sound comes

from a location that is not attended, then σdeviant and τdeviant are used. A random

time is chosen from the resulting exGaussian distribution and used as the simulated

response time. Using this method, it is possible to simulate a range of reaction times

with a similar mean and standard deviation to that of the behavioral data.

Drift diffusion process In addition to simulating a range of reaction times,

a realistic representation requires ACT-R agents to also simulate errors. The drift

diffusion model provides a means to simulate both a range of reaction times and error

rates in binary choice tasks.

We used the Wiener method, a common method for simulating diffusion processes

[9], to implement the drift diffusion model in our Audio Module extension. Addition-

ally, we added a module parameter that allows a modeler to choose to bypass the

constraint model and use the drift diffusion model instead. When this parameter is

set to True, the Audio Module will calculate reaction times and errors with the drift

diffusion module.

When the drift diffusion model is enabled, the modeler must supply values that

represent the drift rate λ, decision threshold boundary a and non-decision time, Ter.

Given these values, the module will simulate the information accumulation process by

randomly accumulating values towards 0 or boundary a until crossing the threshold,

adding a small amount of time to the deliberation process at each step. If the in-

formation accumulation process reaches a, then a correct response will be processed,

the frequency of the sound is encoded correctly, and the Motor module chooses the

correct button to press. If the accumulated evidence trends towards 0 and eventually

passes this threshold, then an error is recorded, the frequency of the sound will be

incorrectly encoded, and the Motor module will simulate an incorrect button press.
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Using the drift diffusion method, we completed 100 simulations of the vigilance task

in ACT-R. For each simulation, we used a set of drift diffusion parameters (λ, a and

Ter) randomly chosen from the parameters that were calculated using the EZ-diffusion

method described in Section 3.4.2. This resulted in a reaction time and error distri-

bution that is very similar to the behavior we observed in the sustained attention

task and vigilance task (R2 = 0.9996, RMSE = 8.5). A comparison of the simulated

data to the behavioral data is shown in Figures 3.15 and 3.16.
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Figure 3.15: ACT-R simulation results (using the drift diffusion model) reaction times compared to
behavioral data.
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Figure 3.16: Model (using the diffusion method) accuracy compared to behavioral data.

3.8 Conclusion and Future Directions

In this chapter, we presented two new approaches to model attentional bias in spatial

auditory attention, using the results of two behavioral tasks designed to elicit this

type of bias. In the first approach, we used the framework of constraint satisfaction

problems to rapidly test different combinations of three different goal maps and three

different saliency maps. We compared how well each combination fit the behavioral

data. We found two combinations to be effective in modeling the behavioral data,

including the Reciprocal Model and Inhibited Goal Map Model, described in Sec-

tion 3.6.1. These represent two possible hypotheses about the shape of the saliency

map. First, the saliency map may contribute an equal amount of attention across the

attention range, with top-down inhibition being the primary driver of the Mexican

hat shape observed in the behavioral data. Second, the saliency map may be an

inverted Gaussian shape, contributing more attention near the edges of the range.
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Further experimental work must be done to determine the shape of the saliency map.

It would also be interesting to examine how the saliency map and resulting priority

map change as the range of attention increases from 180◦to 360◦.

We supplemented the results of our constraint model by using the EZ-diffusion

model to model how information accumulates in this spatial auditory attention task.

We showed how EZ-diffusion parameters, including the drift rate and boundary sepa-

ration, were related to the attentional bias and accuracy at each spatial location. By

using a diffusion model, we were also able to investigate how these parameters relate

to whether a subject will correctly perceive a sound or respond in error.

Finally, we presented an extension to the ACT-R audio module that uses the

constraint model to predict response times to cues that are presented from differ-

ent spatial locations. The extension incorporates parameters that allow modelers to

model individual differences in the spatial auditory attention task. One approach

allows simulating response times as an exGaussian distribution, while the second

model’s individual differences in response times, as well as perceptual errors in bi-

nary choice tasks, using the drift diffusion model. Continued development on the

audio module represents an interesting area of continued research that will open up

new possibilities for improving our understanding of spatial auditory attention and

modeling tasks where audition is important.


