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Chapter 4

Confirmation Bias in Probabilistic

Learning Tasks

In the previous chapter, we considered bias in auditory attention. In this chapter, we

continue exploring bias, but in a different setting. When people are confronted with

large amounts of data or uncertainty, they rarely have the time or cognitive resources

to conduct a systematic analysis of all available information. Instead, the person will

usually make a decision using a heuristic, which may lead to bias and potentially costly

errors. A recommender system can try to mitigate potential bias by examining all the

relevant information and providing feedback or recommendations to the user to guide

their decision. In some cases, the recommender system may inform the user of how

confident it is in the recommendation. The user may choose to use the recommender

system’s suggestion or choose some other option. To understand the role of bias in

this type of interaction, we designed and compared four different cognitive models

of a task where participants are required to choose between two alternatives. They

receive feedback from a computer program that is sometimes incorrect. To evaluate

the models, we computed their accuracy in reproducing behavioral data. We show

that using an instance-based learning approach that weights past experiences highly
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is effective in simulating users in this task. Using this model, we show that when users

are warned about the potential for incorrect feedback, they weight past experiences

much higher than when they are not warned, leading them to ignore feedback more

often than they should [19]. This has implications in the design of systems that

make potentially inaccurate recommendations when faced with uncertain data. The

work presented in this chapter was originally published in the Proceedings of the 16th

International Conference on Cognitive Modeling [20] and the Proceedings of the 2017

International Joint Conference on Artificial Intelligence [71], and presented at the

Society for Judgement and Decision Making Annual Conference 2018 [72]. 1

4.1 Introduction

In this chapter, we model the cognitive mechanisms involved in a decision making

task where an agent makes decisions in an uncertain environment where they receive

potentially incorrect feedback. In an ideal world, decision-makers would have the time

and cognitive resources to review all relevant factors necessary to make an informed

decision. However, this is often not realistic. In many real-world situations, relevant

information may be missing or incorrect, and time pressure does not allow for a full

systematic analysis of all available data. Situations like these often lead to the use of

heuristics, or rules of thumb, in important decision-making tasks. Although heuristics

can lead to accurate decisions in many realistic scenarios [21], they can also lead to

systematic errors and biases [73].

Decision support systems have the potential to help users reduce or remove cog-

nitive biases in decision making, either by offering recommendations or showing only

the information relevant to a decision [74]. Making sure such systems are effective

requires an understanding of the underlying cognitive mechanisms and behavior of a

user [3, 75] through behavioral experiments, user testing a prototype, simulation, or

1 Code relating to this project can be found at: https://github.com/jaelle/matchmaker
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some combination of these.

As discussed in 2.1, cognitive architectures offer one approach to simulating users.

These provide a combination of cognitive theories and computational tools that can

be used to model a user completing a particular task [76]. They simulate human

behavior using cognitive mechanisms and theories, which provides insights into the

underlying strategies that users employ and can help to identify the strengths and

weaknesses of a particular design choice.

In this chapter, we examine how displaying warnings about possibly incorrect feed-

back can affect a decision maker’s ability to learn from new information and make

effective decisions. In situations where the system may provide some inaccurate in-

formation, it may seem advisable to warn the user so that they can more carefully

scrutinize the available information [77]. Similar to what was done in Chapter 3,

in the context of spatial auditory attention, we simulate users completing a proba-

bilistic learning task using ACT-R. Our results show that warnings may not always

improve decision making and can instead cause a user to give more weight to their

past experiences and ignore new information, even when it is not rational to do so.

4.2 Background

Two theories have been proposed to explain how people use their past experiences

to make decisions, including instance-based learning (IBL) [7] and utility learning

theory [8]. In this chapter, we demonstrate how ACT-R can be used to compare

instance-based learning and utility learning models of subjects’ decision-making pro-

cess in a probabilistic learning task. We show which models are useful in modeling

behavior when people are warned about potentially incorrect feedback and what those

models can tell us about the underlying cognitive process involved in processing such

warnings.
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4.2.1 Instance-Based Learning

Instance-based learning methods propose that humans adapt their decision-making

strategies in response to past experiences. Initially, decision-makers may use a heuris-

tic approach and make a choice based on a simple rule. As they gain more experience

and encounter similar situations, they adjust their strategies to choose actions that

previously resulted in favorable outcomes [32].

When modelers implement instance-based learning in ACT-R, they store decision

making experiences as instances in declarative memory (introduced in Section 2.1).

Instances are made up of three components, including the situation, the decision, and

the outcome. The situation includes the attributes relevant to the decision, chosen

by the modeler. The decision would be how the model responded in that situation.

Finally, the outcome can be represented as 1 if it were positive, or 0 in the case of a

negative outcome.

For example, if the agent is asked to respond to a query of 2 + 2, then the sit-

uation would be the attributes making up the query (i.e., operator=sum, num1=2,

num2=2). They may respond correctly or incorrectly, based on the knowledge that

has been added by the modeler or learned from the environment. If the agent re-

sponds with 4 and receives positive feedback, a new instance would be stored, that

contains the situation (operator=sum, num1=2, num=2), the decision (decision=4),

and the outcome (outcome=1). This information is stored as a tuple in memory

as (operator=sum, num1=2, num2=2, response=4, outcome=1). If the agent incor-

rectly responded 5 and received negative feedback, a tuple (operator=sum, num1=2,

num2=2, response=4, outcome=0) would be stored in memory.

If the agent is asked about 2 + 2 in the future, it will make a retrieval request

from ACT-R, which would return instances with sufficiently high enough activation,

calculated using base-level learning as described in Equation 2.2. Other components

of activation, such as partial matching and spreading activation, may also be used.
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When decisions are made by retrieving instances from memory, they are considered

to be intuitive. Modelers often simulate more deliberate decision making processes

using a hybrid approach that combines utility learning and instance-based learning

[31, 78].

4.2.2 Hybrid Models with Utility Learning

Utility learning models simulate a deliberate decision-making process where the agent

can try different approaches to solving a problem. Over time, the agent will learn to

use actions that produce the best outcome. A modeler can create several production

rules that represent different ways of solving a problem or making a decision. The

agent will then complete a task by choosing a rule that best fits the current situation.

As long as a rule exists that matches the current situation, the agent will continue to

retrieve and act upon it. Once the agent receives feedback, the utility value for each

rule that led to that feedback will be updated using the time discounted equation

described in Equation 2.7. As the agent encounters new trials, it uses feedback to

refine its decision-making process and adapt to the environment.

By combining procedural memory with instance-based learning, modelers can sim-

ulate more deliberate decision making based on explicit rules. With utility learning,

the modeler can provide the agent with some basic decision-making rules. Using

these rules as a basis, the agent can simulate how a decision-maker tries different

approaches to learn the one that works best in the given situation.

4.3 Related Work

In the following subsections, we discuss related work that has applied cognitive models

to learning and decision making.
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4.3.1 Cognitive Models for Predicting Human Behavior

Several examples exist where decision support system interfaces and their predictions

were improved by incorporating theories and models of cognition. In a recent human

choice prediction competition, Plonsky et al. [2] showed that machine learning algo-

rithms incorporating cues based on observed cognitive processes were more effective

than systems that did not. Cognitive models have also been used to generate synthetic

data used to train machine learning algorithms that predict human behavior [79] or

generate accurate predictions on their own. Lebiere, Christian et al. [80] demonstrate

how cognitive models can use spatial information gathered from real-world data to

generate recommendations for users during a natural disaster or other emergencies.

In Cranford et al. [81], an IBL model was developed in ACT-R to simulate how hu-

mans might learn to react to deceptive strategies in a cyber attack. By observing the

cognitive model’s behavior, researchers optimized an algorithm that decides when to

present deceptive warnings to reduce the likelihood of an attack.

The models presented in this chapter are, to the best of our knowledge, the first to

model confirmation bias in a setting where a system warns its users about potentially

incorrect feedback.

4.3.2 Cognitive Models of Learning

Researchers have used instance-based learning (IBL) to model a variety of tasks in-

volving learning and decision making. Cleotilde Gonzalez et al. [82] reviews many of

the dynamic decision making tasks that were successfully modeled with IBL, such as

stock portfolio management, and hiring decisions. Instance-based learning has also

been used to model decisions involving probability adjustment and resource allocation

as instinctive choices made without deliberation or explicit awareness in [83].

Utility learning is another common approach to modeling learning in humans.

Researchers have used utility learning to effectively model a variety of experiments



58

conducted to study behavior in recurrent choice and skill learning [84]. It has also

been used to model heuristics. In [85], the authors created an ACT-R model that

used utility learning to show how feedback causes heuristics to become the dominant

strategy.

Researchers in artificial intelligence have incorporated both utility learning and

instance-based learning into autonomous systems and robots for a variety of purposes.

In [86], a classification system was designed to recognize facial expressions. It used

a hybrid cognitive model that incorporated both instance-based learning and utility

learning to identify which features were necessary for classifying an emotion. In

[31], another hybrid cognitive model used utility learning and instance-based learning

to simulate how young children learn to follow the gaze of others. A robot was

programmed with the resulting model to show awareness about its environment and

the people in it.

The work presented in this chapter is novel since it compares both instance-based

and hybrid models to determine the efficacy of using cognitive models of memory and

learning to simulate humans making decisions in the face of unreliable information.

4.4 Methods

We test four approaches to modeling confirmation bias in the probabilistic learning

task. The first approach utilizes spreading activation and instance-based learning to

apply a higher weight to a cue that participants were biased to believe was essential

for making correct decisions. The second approach is based on the heuristic strategy,

take the best. In take the best, decision-makers order a set of cues and then try each

one in order until finding one that can differentiate between two choices [1]. Using

procedural memory and utility learning, we created a model that learns which factors

are important for distinguishing between two choices and then makes decisions based
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on between 1-3 of those factors while ignoring the remaining information.

In this section, we first describe the behavioral task being modeled and then

present the four cognitive models that we have designed using either IBL or a hybrid

approach that incorporates utility learning. These models are used to simulate deci-

sion making in a probabilistic learning task. We compare each model to the results of

the behavioral experiment described in the next section and find that the IBL models

are more accurate at simulating decision making in our task than the hybrid models.

Using the IBL approach, we show that spreading activation (see Section 2.1.2) can

be used to model situations where a person applies a disproportionate amount of

attention to some feature to make decisions.

Match Profile
• Plays Video Games
• Blonde Hair
• Age: 25

Biased Factor

Cri�cal Factor

Figure 4.1: In the behavioral task, participants play matchmaker and choose a matching profile that
best suits a particular bachelor. They are initially biased to believe that the bachelor only cares
about what the potential match does for entertainment. However, the critical factor important to
making correct matches is actually hair color.

4.4.1 Behavioral Experiment

We designed a behavioral task to examine the effect of warnings on the effectiveness

of decision-makers. In the task, subjects (N=99), were asked to play the role of a

matchmaker and choose one of two bachelors (Frank or James) for a given match,

based on the match’s attributes (hair color, hobby, entertainment preference, age,

and drinking habits). Initially, subjects were given example profiles that they were

told each bachelor would like. The examples led participants to an incorrect biased
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belief that entertainment preference was critical to choosing the correct bachelor. For

the remainder of the experiment, hair color was critical to making accurate matches.

Baseline Phase 
30 trials

no feedback

Learning Phase 
60 trials

feedback – 25% is inaccurate

Testing Phase 
30 trials

no feedback

Figure 4.2: Subjects completed three phases in the experiment.

Figure 4.2 illustrates how the experiment proceeded. After viewing the examples,

subjects completed a Baseline phase of 30 trials, without feedback, to test whether

or not they were making matches based on the entertainment attribute. After that,

subjects began the Learning phase, lasting 60 trials. Feedback in the Learning phase

was incorrect 25% of the time. 51 of the subjects received a warning about the

potentially incorrect feedback, and the remaining 48 did not. Following every trial

in the Learning phase, the Warned group was asked to rate their level of trust in the

feedback. After completing the Learning phase, subjects completed a Testing phase

of 30 trials to test whether or not they were able to overcome the initial bias to make

accurate decisions.

Throughout the experiment, subjects respond to three types of trials: Congruent,

Incongruent, and Irrelevant.

Congruent trials pair the learned bias with the correct value for the critical at-

tribute. An example of a congruent trial is entertainment = videogames being paired

with haircolor = blonde. Participants have been biased to believe that James likes

matches who like video games, and in reality, he likes matches with blonde hair, so

the biased and critical factor is congruent.

Incongruent trials pair the learned bias with an incorrect value for the critical

attribute. An example of an Incongruent trial is entertainment = videogames being

paired with haircolor = brown. James does not like matches with brown hair, but

the participant may believe this is a good match for him, using the established bias
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that James likes matches who like video games.

Finally, irrelevant trials pair the critical attribute with an entertainment preference

that is not related to the participants’ learned bias. An example of an Incongruent

trial is entertainment = sports (sports is not a learned value for the biased attribute)

paired with haircolor = blonde. If participants have correctly learned that hair color

is critical for making correct matches, they can correctly make this match. However,

they cannot make the match based on the biased entertainment factor established at

the start of the experiment.

From the responses, it is possible to analyze how well subjects mitigated the bias

and increased their match accuracy. Participants can make correct responses for

each trial type by matching on the critical factor (hair color). If participants make

matches based on the established biased factor (entertainment), they will be correct

on Congruent trials and incorrect on Incongruent trials. Finally, their bias was not

useful for making correct decisions in Irrelevant trials.

4.4.2 Model Design

Using ACT-R, we design cognitive agents to test four different theories about the

strategies that may be used to describe how human subjects respond to warnings

about incomplete information and can be tested on the collected behavioral data.

Instance-Based Learning Agents

We developed two agents (IBL Model 1 and IBL Model 2) that used instance-based

learning models to simulate intuitive decision making in the experimental task.

Both IBL models are made up of four production rules, which allow the agent

to complete the same behavioral task as the human subjects. Two rules simulate a

heuristic that an incorrect feature (entertainment preference) is critical for choosing

the correct bachelor. One rule will choose to assign a match to James if the match
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1 (p match -entertainment -james

2 =goal >

3 isa match

4 hair =hair

5 entertainment videogames

6 ==>

7 +goal >

8 name james

9 entertainment videogames

10 hair =hair)

Figure 4.3: Example of an ACT-R production rule. The rule checks to see if the current match’s
entertainment attribute value is videogames. If so, ACT-R creates a new instance in the goal buffer,
pairing James with match and its associated attributes for entertainment and hair.

prefers video games (an example of the model code is provided in Figure 4.3). The

other rule will choose to assign the match to Frank if the match prefers sports. If

the match prefers neither sports nor video games, a third rule will assign the match

to either Frank or James with 50% probability. These rules emulate how the human

subjects were biased to believe that entertainment was critical to making a successful

match. In addition to these heuristic rules, a fourth rule is present that assigns a

match to a bachelor chosen based on previous experiences, using the instance-based

learning approach described in Section 4.2.1. This rule looks for instances stored in

memory and chooses the one with the highest activation value. The two IBL models

differ in how each calculates activation.

IBL Model 1. This model simulates how people make decisions based on past

experiences. The activation value is determined as described in Equation 2.1, using

the partial matching (Equation 2.3) to account for similarity, spreading activation

(Equation 2.4) to model the effect of context, and base-level learning (Equation 2.2)

to account for how often and recently an instance has been retrieved. In this model,

spreading activation models attention being spread equally among each cue in a de-

cision making scenario.

IBL Model 2. This model was designed to test the theory that people give a

higher attentional weight to the attribute that they were first biased to believe led to
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correct matches. By default, spreading activation in ACT-R distributes attentional

weights evenly among all attributes in an instance. In order to model more attention

applied to the entertainment preference attribute e, the Equation 2.4 was modified to

include a biased weight parameter, represented by b in the adjusted equation below:

Si = bSe,i +
∑
j /∈e

WjSji, where Wj = 1/n and Sj,i = Se,i = S − ln(fanj). (4.1)

Hybrid Agents

In order to simulate more deliberate decision making, we developed two models that

use instance-based learning in conjunction with utility learning to simulate using a

deliberate process to examine one or more features systematically before making a

decision. Over time, these models learn which features are critical for making correct

decisions and begin to ignore the remaining information.

Both models include rules that encode features and assign a match to a bachelor,

given some encoded features. Encoding rules are triggered if features in the current

trial are not yet encoded. Matching rules are triggered if at least one feature is en-

coded. The model retrieves the rule with the highest utility. Throughout the task,

it is possible to select both encoding and matching rules. Following the approach

outlined in Equation 2.7, the model retrieves the rule with the highest utility, and if

multiple rules have the same utility, then one is retrieved probabilistically. As soon as

a matching rule’s utility surpasses that of a feature encoding rule’s utility, the model

tries to retrieve a past instance that shares those features, using an instance-based

learning approach. If the retrieval request fails, then the model will continue encod-

ing features and using matching rules to retrieve similar matches from declarative

memory. If the model is unsuccessful in retrieving a memory by the time all features

are encoded, then it defaults to matching the bachelor randomly.

Once the model chooses which bachelor is a match for the current trial, it receives
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feedback and updates the utilities of all the production rules that led to that outcome.

Over many trials, the model learns which features are important for receiving positive

feedback, allowing it to make the decision based on a few high utility features and

ignoring the rest.

The two models differ only in their implementation of the take the best heuristic.

Hybrid Model 1. The first model simulates a traditional approach to take the

best, looking at each feature in turn and choosing the match once a feature successfully

acts as a cue to retrieve a memory that previously resulted in positive feedback.

Hybrid Model 2. Sometimes, a matching memory may be available in declara-

tive memory, but matching on a single feature is not sufficient to achieve an activation

value that exceeds the retrieval threshold. In this situation, Hybrid Model 1 will con-

tinue encoding and matching until it has tried all combinations of up to three features.

This approach allows the agent to simulate a more systematic approach to examining

more information than is possible with a traditional take the best heuristic.

4.5 Experimental Design and Results

We will now discuss the experimental design used to compare the four agents and the

results.

4.5.1 Instance-based Learning Agents

Both ACT-R agents completed 120 trials in the same order presented to human

subjects. First, the agent completed 30 trials of a Baseline phase to establish the

bias to make matches based on entertainment preference. After the Baseline phase

was complete, the agent proceeded to the Learning phase, which consists of 60 trials.

During this phase, the agent received inaccurate feedback about whether or not the

match was successful 25% of the time. During the learning phase, the agent used



65

Parameter Values Tested
ans 0.25, 0.5, 0.75, 1, 1.25, 1.5
mp 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3
rt 0, 0.5, 1, 1.5, 2

bw (only in IBL Model 2) 0.2, 1, 5, 10

Table 4.1: Parameter values tested for IBL models.

an instance-based learning rule to base its decisions on previous experiences, rather

than the initial biased rules. Finally, upon completing the Learning phase, the agent

advanced to the Testing phase and did not receive any more feedback. This phase

was used to evaluate the final decision-making strategy.

Model Parameters

ACT-R provides several parameters that can be adjusted to fine-tune the performance

of the model. For both IBL models, five of these parameters were chosen using a

parameter search over several possible values. First, noise (ans), which is used to add

noise to the activation values of the instances, making the retrieval process stochastic.

Second, a mismatch penalty constant (mp) was adjusted to represent the degree of

similarity that must exist between a chunk in the buffer and those retrieved from

declarative memory. If mp is substantially large, the chunks must be very similar

to be retrieved. If it is a smaller value, then the chunks can be less similar. The

retrieval threshold parameter (rt) represents how high the activation value must be

for a chunk to be retrieved [87].

The parameter search for the IBL Model 2 required the sixth parameter to be

added (bw). As described in Section 4.4.2, this parameter adjusts the amount of

attentional weight applied to the entertainment preference attribute.

For every combination of parameter values described in Table 4.1, the associated

model was run 100 times to simulate 100 agents completing the behavioral task. We

calculate R2 and RMSE for each run by comparing its average performance with the
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average performance of the Warned and Unwarned human subjects. The results are

discussed in Section 4.5.

A grid search was used to identify the parameter combinations that led to the

best fit of both the Warned and Unwarned group. Given the limited number of

combinations, the search tried all combinations of parameter values described in Table

4.1 for the IBL models and 4.5 for the hybrid models. We discuss below the results

corresponding to the parameters that led to the highest R2 values for each model for

the Warned and Unwarned groups.

Condition Model Congruent Incongruent Irrelevant
Warned Human 0.92 0.18 0.60
Warned IBL Model 2 0.91 0.18 0.60
Warned IBL Model 1 0.78 0.27 0.55
Warned Hybrid Model 2 0.96 0.10 0.49
Warned Hybrid Model 1 0.5 0.48 0.51

Unwarned Human 0.86 0.32 0.62
Unwarned IBL Model 2 0.82 0.32 0.61
Unwarned IBL Model 1 0.78 0.34 0.61
Unwarned Hybrid Model 2 0.96 0.10 0.49
Unwarned Hybrid Model 1 0.5 0.48 0.51

Table 4.2: Comparison of the models’ and human’s accuracy for both Warned and Unwarned groups
over each trial type. Models are sorted by best to worst fit for each condition. Human performance is
in bold. IBL Models replicated human behavior more closely than Hybrid Models, with IBL Model
2 performing the best.

IBL Model 1. This model implemented instance-based learning with ACT-R’s

implementation of spreading activation, as described in Section 2.1.2. The resulting

R2 values for the best fitting parameters were relatively good. The parameters lead-

ing to the best R2 and RMSE values are reported in Table 4.3. We also examined

the resulting accuracy of the model and human behavior to see how well the model

was able to simulate human performance in the Congruent, Incongruent, and Irrele-

vant trials. Table 4.2 shows that IBL Model 2 reproduced a proportion of accurate

responses very similar to human data in both the Warned and Unwarned conditions

and across all trial types.
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Model ans mp rt R2 RMSE
Warned 0.5 1.25 0 0.87 0.12

Unwarned 1.5 2.75 1.5 0.91 0.08

Table 4.3: IBL Model 1 - Parameter values that resulted in the best fit (lowest RMSE) for the
Warned and Unwarned group.

IBL Model 2. This model implemented instance-based learning with a modified

implementation of spreading activation, as described in Section 2.1.2. The resulting

R2 and RMSE measures for the best fitting parameters are reported in Table 4.4

and a comparison of each model’s accuracy to that of humans is found in Table 4.2.

Model ans mp rt bw R2 RMSE
Warned 1.25 1.75 1 10 0.95 0.08

Unwarned 0.75 2.25 2 1 0.93 0.08

Table 4.4: IBL Model 2 - Parameter values that resulted in the best fit (lowest RMSE) for the
Warned and Unwarned group.

4.5.2 Hybrid Agents

For both hybrid models, the values of the five parameters were set using a grid search

over several possible values.

Like the IBL models, noise (ans) and retrieval threshold (rt) are free parameters

in the hybrid models. Three additional free parameters were also fit for the hybrid

models. Spreading activation weight (ga) represents the total amount of attentional

weight that gets divided amongst each attribute (S in Equation 2.4). The utility noise

parameter (egs) represents how much noise gets added to the production utilities.

Finally, we fit the reward parameter, which represents a value that gets propagated

to the production rules that led to a correct response, using the function described

in 2.7.

For every combination of parameter values described in Table 4.5, the associated

model was run 100 times to simulate 100 agents completing the behavioral task. We
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Parameter Values tested
egs 0.5, 1, 1.5, 2, 2.5, 3

reward 1, 2, 3, 4, 5, 6, 7, 8
ans 0.25, 0.5, 0.75, 1, 1.25, 1.5
rt 0, 0.5, 1, 1.5, 2

Table 4.5: Parameter values tested for hybrid models.

calculate R2 and RMSE for each run by comparing its average performance with the

average performance of the Warned and Unwarned human subjects. The results are

described in Section 4.5.

The results showed that the hybrid learning models using instance-based learning

combined with utility learning were not as effective at modeling human performance.

Hybrid Model 1. Utility learning was used to model the take the best heuris-

tic, choosing the first recalled cue that differentiates between two bachelors. The

parameters that achieved the highest R2 and RMSE values for each condition are

reported in 4.6. Table 4.2 compares the accuracy of the model to that of Warned and

Unwarned participants.

Model egs reward rt ans ga R2 RMSE
Warned 6 8 1.5 0 0.25 0.83 0.27

Unwarned 6 8 1.5 0 0.25 0.80 0.23

Table 4.6: Hybrid Model 1 - Parameter values that resulted in the best fit (lowest RMSE) for the
Warned and Unwarned group.

Hybrid Model 2. This model implemented a modified version of take the best,

where the agent chose the matching bachelor based on the first combination of up

to three cues that differentiated between them. This approach was a better fit than

the first hybrid model but was still not as good as pure instance-based learning

approaches. The parameters that achieved the the highest R2 and RMSE values for

each group are reported in Table 4.7, while Table 4.2 compares the accuracy for each

trial type.
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Model egs reward rt ans ga R2 RMSE
Warned 1 6 1 0.3 0 0.85 0.18

Unwarned 1 6 1 0.3 0 0.78 0.21

Table 4.7: Hybrid Model 2 - Parameter values that resulted in the best fit (lowest RMSE) for the
Warned and Unwarned group.

4.6 Discussion

In the previous sections, we described and examined four approaches to modeling a

probabilistic learning task. These included using instance-based learning methods to

model intuitive decision making, and hybrid models that used instance-based learning

and utility learning to use a more deliberate approach to learn which features were

necessary for making correct decisions.

IBL Model 1 used instance-based learning to model how participants make de-

cisions using an intuitive approach that evenly distributed attentional weight across

all cues in the current trial. This approach did better than both hybrid models, in-

dicating that the intuitive decision making modeled by instance-based learning is a

better explanation for human behavior in this task, compared to the more deliberate

decision making modeled by the hybrid models. However, this model did not perform

as well as IBL Model 2, which indicates that using spreading activation, which evenly

distributes attentional weights across all attributes, is not sufficient to model biased

human behavior.

For IBL Model 2, we simulated participants using an intuitive approach but

weighting the entertainment cue more than other cues. In Incongruent trials, par-

ticipants who matched based on entertainment found that doing so did not result in

positive feedback. Since the Warned group knew that some feedback was incorrect,

they may have discounted this feedback and continued to weight the biased factor

highly when making decisions. The experimental data supported this notion since

the Warned group achieved lower accuracy in the Testing phase (59%) than the Un-



70

warned group (64%) on the Incongruent trials. IBL Model 2 represented this by

applying a higher weight (bw) to the spreading activation supplied by the entertain-

ment attribute.

When comparing the values for the bw parameter, the value that best fit the

Warned group was much higher than the one that led to the best fit in the Unwarned

group (10 vs. 1). The Warned group’s large bw value indicates that the Warned group

was weighting entertainment higher than the Unwarned group and less effective than

the Warned group at using the provided feedback to overcome that bias.

The hybrid models were designed to simulate someone deliberately examining one

cue after another using a strategy based on the take the best heuristic. Using 1-3

cues, the hybrid agents attempted to retrieve a memory of receiving correct feedback.

If successful, the agent answered as it did before. If they could not recall a matching

instance, the agents would randomly choose which bachelor to assign to the match.

Over time, utility learning updated the utilities for production rules that considered

cues that are effective for making correct decisions.

Both hybrid models were not very successful at modeling human decision making.

Modeling a take the best approach with only one cue was not a good explanation

of human behavior, and it led to responses that were correct only about 50% of the

time for all trial types. Hybrid Model 2 performed a little better, simulating high

accuracy on the Congruent trials, low accuracy on the Incongruent trials, and chance

accuracy on the Irrelevant trials. However, this model was more biased than its

human counterparts. Like human participants, the models were initially biased to

believe that entertainment was the most critical factor in making correct matches.

It also received positive feedback in Congruent trials, reinforcing the utility of the

production rule to recall instances from their entertainment attribute. In Incongruent

trials, the utility function reduced the utility of using the entertainment rule, but this

was not sufficient to overcome the bias induced at the start of the experiment, given
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the parameter combinations we tested. Comparatively, human participants showed

more variability in their choices than the hybrid agents, which led to less biased

responses overall.

4.7 Summary and Future Directions

We analyzed instance-based learning [7] and utility learning methods [8] for simulat-

ing users completing a probabilistic learning task. We compared the output of four

models to that of the human data to identify the underlying strategies that are most

likely to be used when a user receives a warning about possibly incorrect feedback,

compared to when they are not. Our results show that the instance-based learning

models simulated human participants much more accurately than the hybrid models.

In particular, an IBL model that incorporated a biased attentional weight for the

entertainment factor achieved the best fit when compared to human subjects. These

results indicate that participants were using an intuitive process for making decisions,

rather than the more deliberate approaches and that they were weighting entertain-

ment more highly than other cues in the decision process. Both groups exhibited

this bias, but it was especially prominent for the Warned group, as indicated by the

higher bw values in the model simulating this group.

We considered how people would respond when a recommendation system gives

feedback that might be wrong. In a behavioral experiment, we compared a group of

participants who were warned about possibly incorrect information with those who

were not. Experimental results showed that the Warned group was significantly less

accurate at making correct matches than those who were not.

These results are the first step in analyzing how warnings affect how users’ ability

to process feedback and are significant for considering the design of feedback and

warnings in automated recommendation systems.
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A next step could be to consider how bias and trust affect the sensitivity to

feedback in overcoming bias. During the experiment, warned participants rated (on

a scale of 1-5) how much they trusted the feedback they received after each trial in

the Learning phase. Overall, they rated Incongruent trials with an average rating of

2.5 and Congruent trials with an average rating of 4. This lack of trust seems to have

led the warned participants to ignore feedback more often when it did not align with

their preconceptions, leading to more weight applied to the entertainment factor when

making decisions. It would be interesting to see if we observe this effect in unbiased

participants, where they cannot rely on a preconceived bias to make decisions and

must instead use environmental cues (such as feedback) to learn what is important

for making correct choices.

In the future, we will also investigate if warnings about recommendations and

feedback can be used effectively, such as first addressing a user’s preconceived bi-

ases. The cognitive model proposed here could be incorporated into an adaptive

recommendation system that can tailor feedback and warnings to an individual user

to correctly calibrate their trust in the system and lead to better engagement with

recommendation systems.


