
10

Chapter 2

Preliminaries

In this chapter, we present a background on topics relevant to the remaining chapters.

First, we will introduce a cognitive architecture, ACT-R, and provide information on

how this framework uses computational techniques to model cognition and behavior.

We will also provide context on heuristics in decision making from the cognitive

science literature.

2.1 ACT-R

ACT-R (Adaptive Control of Thought-Rationale) is an architecture that provides a

framework for developing agents that mimic human perception, learning, and memory

[12]. It includes modules that represent various cognitive functions such as declar-

ative memory, procedural memory, visual attention, and more [27]. Modules store

information that is known to the cognitive agent inside of buffers. For example, the

declarative memory module contains a retrieval buffer that stores memories recently

retrieved. The visual buffer stores information about what the agent is currently at-

tending to visually. Modules can communicate a limited amount of information with

one another through the buffers[12].

Using the ACT-R framework, researchers have successfully modeled and predicted



11

human behavior for a range of applications in psychology, human-computer interac-

tion, education, and neuroscience [28, 29]. The architecture has also been used in

many human-machine interaction tasks, such as developing interactive virtual tutors

[30] and teaching robots about human behavior [31].

Visual 
Module

Audio 
Module

Motor 
Module

Environment

Buffers

Procedural 
Memory

Declara�ve 
Memory

Ac�on

Inputs

Figure 2.1: Components of the ACT-R architecture. Input is gathered through various modules,
while information known to the agent is stored in declarative memory. Information that is currently
being attended to is stored in the buffers. Procedural memory uses the information available in the
buffers to choose a specific action.

2.1.1 ACT-R Components

ACT-R is made up of several components (see Figure 2.1). Modules such as the

Visual, Audio, and Motor modules collect information from the environment. We

discuss the Audio module in more detail in Section 2.1.4. When a sight or sound is

actively being perceived and attended to, this item is stored in a buffer associated

with its module. Other buffers are also available for storing information related

to the current situation. For example, a Goal Buffer stores information about the

agent’s current goals. The Imaginal Buffer stores other task-relevant details that



12

are important for the agent to choose its actions. The Declarative Memory and

Procedural Memory modules handle how agents store information and learn from it.

These modules are described in more detail in the following sections.

2.1.2 Declarative Memory

ACT-R’s declarative memory module stores facts that the model knows as instances

in memory. Each instance includes the data associated with a particular fact and

an activation value that represents how difficult it is to remember. The activation

value is calculated based on how often the fact has been retrieved and how recently.

More details about this calculation are provided below. When the activation value

associated with a particular instance is high, it is more likely to be retrieved. If the

activation value is below the amount specified by a retrieval threshold parameter,

then it cannot be retrieved at all.

As an example, consider a cognitive agent that is asked to recall the sum of 2

+ 2. The agent will make a retrieval request to the declarative memory module.

If a chunk exists in memory that contains this fact, there is a possibility it will be

retrieved. However, if the activation value is too low (if the fact hasn’t been retrieved

recently or often), then the fact will not be retrieved. However, if the activation value

is high enough, then the model will successfully retrieve the sum of 2 + 2 and provide

a response. Now we discuss how the activation value is calculated.

Activation The activation value of a memory instance i is made up of four compo-

nents, including base-level learning (Bi), partial matching (Pi), spreading activation

(Si), and noise (εi).

Ai = Bi + Pi + Si + εi (2.1)

Below, we briefly describe the components of activation.



13

Base-Level Learning Base-level learning (Bi) affects the final activation value

based on the recency of a particular memory and how frequently it is retrieved.

Bi = ln
∞∑
j=1

t−dj (2.2)

Here, n refers to the number of past references to instance i, tj refers to the time

since the jth reference, and d refers to the decay rate and is set to a default value of

0.4. This equation causes instances that have been recently retrieved or frequently

retrieved to have a higher activation value.

Partial Matching Partial matching controls how similar instance i must be to the

current retrieval request in order to be retrieved.

Pi =
∑

PMli (2.3)

Here, l represents each attribute in instance i. P is the mismatch parameter,

Mli refers to the distance between l and the corresponding attribute instance i. If

i and l are the same, then this value is 1; otherwise, it is 0. For example, consider

that we have stored in memory an instance with the following attributes: entertain-

ment=videogames, hair=blonde, hobby=drawing. We could then make a retrieval

request for an instance with the attributes: entertainment=sports, hair=blonde,

hobby=drawing, and the Pi value would be 2 since two of the three attributes are

the same. The more attributes in common, the higher the activation value, and the

more likely it is to be retrieved.

Spreading Activation Spreading activation is used to model the effect of context

on memory retrieval [32] and is an important component in the models described in

this chapter. When the instance has attributes in common with the current situation,

the Si weights are applied to the shared attributes increase, as described in Equation



14

2.4 below, raising the instance’s activation and likelihood that memories with these

will be retrieved [12].

Si =
n∑

j=1

WjSji where Wj = 1/n and Sji = S − ln(fanj) (2.4)

In the above equations, Wj refers to attentional weights applied to each attribute

in a given instance. By default, these weights are spread evenly among all n attributes.

The variable fanj refers to one more than the number of chunks in declarative memory

that contain an attribute that is the same as j. The variable Sji represents the

spreading activation between an attribute in declarative memory and a matching

attribute in the retrieval request.

Finally, since human memory retrieval does not always lead to remembering the

same memory every time, noise is added to the model to simulate memory’s stochastic

nature. Noise is generated according to a logistic distribution with a mean of 0 and

variance, σ2, relating to the parameter s as follows.

σ2 =
π2

3
s2 (2.5)

The four components of activation work together to simulate the memory retrieval

process that is important in modeling many learning and memory tasks.

2.1.3 Procedural Memory and Utility Learning

The procedural memory module represents ingrained or learned rules and heuristics

that are known to the agent and describe how it will respond to the environment. The

procedural module uses procedural rules to compare what is in the ACT-R buffers

with the conditions defined by the modeler. If they match, then that rule is valid in

the given context. If multiple production rules match the information in the buffers,

then any of the rules are valid, and ACT-R must decide which rule to follow. The



15

probability Pi that ACT-R will select a rule from among a set of matching ones can be

calculated using the Boltzmann equation (see Equation 2.6). By using a probabilistic

approach to memory retrieval, ACT-R ensures that the agent can explore the decision

space and possibly find other, more preferable paths to success [33].

Pi =
eUi/

√
2s∑

j e
Uj/
√
2s

(2.6)

Utility values (Ui) are assigned to production rules to represent whether or not

they are useful for the current task. After receiving feedback about a decision, the

decision maker updates the utility of the rules that led to that outcome [8]. At

iteration n, these values are

Ui(n) = Ui(n− 1) + α[Ri(n)− Ui(n− 1)] (2.7)

Here, α refers to the learning rate and has a default value of 0.2. When the model

arrives at a state where it receives an external reward (specified by the reward param-

eter), then each production rule i will receive a time-discounted reward Ri(n), which

is the total external reward minus the amount of time that passed since production i

was selected. This results in lower rewards applied to production rules that occurred

long before the reward was received.

2.1.4 ACT-R Audio Module

The Audio Module provides basic functionality for responding to sounds in the en-

vironment. Figure 2.2 illustrates how the module integrates into ACT-R. When a

sound becomes available to the agent’s environment, it appears as a sound event in

the audio module’s Audicon, which is a data representation of all sounds that an agent

can attend to. Sounds in the Audicon exist in the environment, but have not been

perceived or attended to by the agent. Sound events are represented in the Audicon



16

as a set of attributes, including the type of sound, its content, and if its internal

or external to the agent. Once the sound is available in the Audicon, the ACT-R

agent can perceive and attend to it by retrieving it from the Audicon and storing it

in the Aural-Location buffer. Unless specified by the modeler, the Aural-Location

buffer can only store one sound at a time. At this stage, the agent can be said to

have perceived the sound, but not yet encoded it. The information is encoded as a

symbolic representation of the sound stored in the Aural Buffer.

Audio Module

Audicon

Aural-Loca�on
Buffer

Aural Buffer

Inputs

P
ro

ce
d

u
ra

l 
M

em
o

ry

Ac�on

O
th

er
 B

u
ff

er
s

Figure 2.2: Visual depiction of how the audio module communicates with the ACT-R buffers.

2.2 Heuristics in Decision Making

We will now provide some background on heuristics in decision making. Heuristics

are strategies, or adaptive shortcuts, that humans use to make decisions. This idea

originated from the study of bounded rationality [34], or the observation that both

the human mind and the environment make application of normative decision models



17

impossible. Heuristics have been studied in-depth in many fields; see Hilbig [35] for

an overview. Though sometimes seen as second-best alternatives when maximization

is not possible, other research views heuristics as ideally adapted strategies that cap-

italize on the structure of the environment to provide solutions when optimization

is not an option, e.g., NP-hard problems, ill-defined problems, or unfamiliar/time-

sensitive problems. In many situations, heuristics have been shown to outperform

solutions that use more complex algorithms. For example, in DeMiguel et al. [36],

researchers found that 3000 months of stock market data would be required before a

sample-based mean-variance strategy would outperform a heuristic strategy to evenly

divide funds across all stocks in a small 25-asset portfolio.

Key to the idea of heuristics is that they are fast, composed typically of three

steps: search, stop, and apply decision rules. They are also frugal, ignoring some of the

casually relevant information. Proponents of fast and frugal heuristics have promoted

the idea of ecological rationality, which examines the rationality of a decision strategy

in its environment [37]. Many heuristics have been identified in decision-making.

For example, satisficing is one such heuristic that is when a set of alternatives are

presented sequentially, and not much is known about future alternatives. In this

scenario, the decision-maker chooses the first one that surpasses some aspiration level

[1]. Take the best is another heuristic strategy that decision-makers may employ.

When using take the best, a set of cues is ordered, and then each one is considered in

turn until finding one that differentiates between two choices [1].


